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Abstract

The continuous wavelet transform (CWT) is a linear time-frequency representation and a

powerful tool for analyzing non-stationary signals. The synchrosqueezing transform (SST) is

a special type of the reassignment method which not only enhances the energy concentration

of CWT in the time-frequency plane, but also separates the components of multicomponent

signals. The “bump wavelet” and Morlet’s wavelet are commonly used continuous wavelets for

the wavelet-based SST. There is a parameter in these wavelets which controls the widths of

the time-frequency localization window. In most literature on SST, this parameter is a fixed

positive constant. In this paper, we consider the CWT with a time-varying parameter (called

the adaptive CWT) and the corresponding SST (called the adaptive SST) for multicomponent

signal separation. We also introduce the second-order adaptive SST. We analyze the separation

conditions for non-stationary multicomponent signals with the local approximation of linear

frequency modulation mode. We derive well-separated conditions of a multicomponent signal

based on the adaptive CWT. We propose methods to select the time-varying parameter so

that the corresponding adaptive SSTs of the components of a multicomponent signal have

sharp representations and are well-separated, and hence the components can be recovered

more accurately. We provide comparison experimental results to demonstrate the efficiency

and robustness of the proposed adaptive CWT and adaptive SST in separating components

of multicomponent signals with fast varying frequencies.
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1 Introduction

Multicomponent signals are common in nature and in many engineering problems. These signals

are usually non-stationary, meaning that their frequencies and/or amplitudes change with the

time. It is important to separate the components of such a signal x(t) to extract information,

such as the underlying dynamics, hidden in x(t). However, due to its non-stationary property, this

is a challenging problem. Sometimes it is even difficult to distinguish a monocomponent signal

from a multicomponent signal. For example,

x(t) = cos(2πξ1t) + cos(2πξ2t) = 2 cos(π(ξ1 − ξ2)t) cos(π(ξ1 + ξ2)t)

has two components, but can be seen as a monocomponent signal if ξ1 is close to ξ2, because in this

case, the amplitude 2 cos(π(ξ1−ξ2)t) changes slowly compared to the carrier wave cos(π(ξ1 +ξ2)t).

The empirical mode decomposition (EMD) algorithm along with the Hilbert spectrum analysis

introduced in [1] is a popular method to decompose and analyze non-stationary signals. The

intrinsic mode function (IMF) is used to represent a monocomponent signal [1]. An IMF satisfies

two conditions: (a) the number of its minimum and maximum must either be equal or differ at

most by one; and (b) the value of the mean of its upper envelope and lower envelope is close to

zero. EMD decomposes a signal x(t) into finitely many IMFs plus a trend signal, and then the

instantaneous frequency (IF) of each IMFs is calculated by the Hilbert spectrum analysis which

results in a representation of x(t) as

x(t) = A0(t) +

K∑
k=1

xk(t), xk(t) = Ak(t) cos
(
2πφk(t)

)
(1)

with Ak(t), φ
′
k(t) > 0, where Ak(t) is called the instantaneous amplitude (IA) and φ′k(t) the IF of

xk(t). There are many articles studying the property of EMD or proposing variants of EMD to

improve the performance, see e.g. [2]-[10]. In particular, the separation ability of EMD is discussed

in [4], which shows that EMD cannot decompose two components when their frequencies are close

to each other. The ensemble EMD (EEMD) is proposed to suppress the noise interferences [5].

A weakness of EMD or EEMD is that it can easily lead to mode mixture or artifacts, namely

undesirable or false components [6].

The time-frequency analysis is another class of methods for non-stationary multicomponent

signals. Some non-linear time-frequency analyses, such as the Wigner-Ville distribution and the

Choi-Williams distribution [11]-[14], have cross-term interferences and cannot be used to recon-

struct the signal components. On the other hand, some linear time-frequency analysis, such as

the continuous wavelet transform (CWT) [15, 16] and the short time Fourier transform (STFT)

[17], have the inverse transforms. The uncertainty principle (see e.g. [18]) imposes an unavoidable
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tradeoff between temporal and spectral resolutions. In addition, the time and frequency reassign-

ments were introduced and studied in [19] and [20] to enhance the energy concentration in the

time-frequency plane.

The synchrosqueezing transform (SST), also called the synchrosqueezed wavelet transform,

was introduced in [21] and further developed in the seminal article [22]. It is a special type

of reassignment method on the CWT which not only sharpens the time-frequency representa-

tion of a signal, but also recovers the components of a multicomponent signal. SST provides

an alternative to the EMD method and its variants, and it overcomes some limitations of the

EMD and EEMD schemes such as mode-mixing. Many works on SST have been carried out

since the publication of [22]. For example, [23]-[25] studied a comparison between EMD and

SST. The stability of SST was studied in [26]. A hybrid EMT-SST computational scheme by

applying the modified SST to the IMFs of the EMD was proposed in [27]. The synchrosqueezed

wave packet transform was introduced in [28]. The SST with vanishing moment wavelets was

introduced in [29]. A multitapered SST was introduced in [30] to enhance the concentration

in the time-frequency plane by averaging over random projections with synchrosqueezing. The

short-time Fourier transform (STFT)-based SST was studied in [31, 32, 33]. The second-order

SST was proposed and studied in [34, 35, 36]. [37] introduced the demodulation-transform based

SST with STFT, and [38] studied CWT-SST with the demodulation-transform. The linear and

synchrosqueezed time-frequency representations were reviewed in [39], which also discussed the

choice of window and wavelet parameters, the advantages and drawbacks of synchrosqueezing,

etc. A STFT-based signal separation operator (SSO) was proposed and studied in [40] and an

empirical signal separation algorithm was proposed in [41], both for signal separation. SST has

been used in engineering and medical data analysis applications including machine fault diagnosis

[42], anesthesia evaluation [43, 29], breathing dynamics discovery [44], sleep stage assessment [45]

and heart beat classification [46].

The “bump wavelet” ψbump(x) defined by

ψ̂bump(ξ) = e
1− 1

1−σ2(ξ−µ)2 χ(µ− 1
σ
,µ+ 1

σ
), (2)

and the (scaled) Morlet wavelet ψMor(x) defined by

ψ̂Mor(ξ) = e−2σ2π2(ξ−µ)2 − e−2σ2π2(ξ2+µ2), (3)

where σ > 0, µ > 0, are the commonly used continuous wavelets. For example, the “bump

wavelet” ψbump(x) is used in [22] to derive the conditions for the recovery of the components from

the SST of a multicomponent signal. In practice, Morlet’s wavelet can be more desirable due to

its nice localization property in both the time and frequency domains.

3



The parameter σ in (2) and (3) controls the window widths of the time-frequency localization

of the wavelets and has effects on both CWT and SST of a signal. In the literature, the parameter

σ of the wavelets is usually treated as a fixed constant. In this paper, we consider a time-varying σ

(called adaptive CWT), namely σ = σ(t) is a positive function of the time variable t. As pointed

out in [39], for a multicomponent signal x(t), if the CWTs of two components are mixed, the SST

will not be able to separate these two components. Thus to separate x(t) with the SST approach

we need to, first of all, separate the CWTs of the components of x(t) in the time-scale plane, that

is, the CWTs of the components lie in non-overlapping regions of the time-scale plane. On the

other hand, the error bounds derived in [22] imply that the synchrosqueezed representation of a

signal is sharper when the width of the continuous wavelet’s window in the time domain, which is σ

(up to a constant), is smaller. The main goal of this paper is to study for a given multicomponent

signal x(t) as given in (1) with A0(t) = 0, the conditions (called well-separated conditions) under

which a suitable time-varying σ = σ(t) can be selected such that the corresponding adaptive

CWTs of xk(t), 1 ≤ k ≤ K do not overlap in the time-scale plane and to provide a formula and

an algorithm to select as small as possible σ(t) such that the associated SST (called the adaptive

SST) of xk(t) will have a sharper representation which results in a more accurate recovery of

xk(t). In this paper, we will consider the linear chirp model, namely, we consider the case where

the CWT of xk(t) is well-approximated by that of a linear chirp signal.

The adaptive SST with a time-varying window width was recently proposed in [47] and the

width of the window is selected through minimizing the Rényi entropy of the SST. Compared

with the approach in [47], our work focuses on establishing well-separated conditions for mul-

ticomponent signals based on the adaptive CWT and a study on how to select σ(t) such that

the CWTs of the components lie in non-overlapping regions of the time-scale plane based on our

well-separated condition. Here we also remark that the window width of the SSO algorithm in

[40] is also time-varying. After we completed our work, we were aware of the very recent work [48]

on the adaptive STFT-based SST in which the window function has not only the time-varying

parameter but also frequency-varying parameter.

The remainder of this paper is organized as follows. First we briefly review SST in §2. Then

we propose the adaptive CWT and SST with a time-varying parameter in §3. In §3, we also

introduce the second-order adaptive SST. We consider the support zone of a CWT of a signal

with a non-bandlimited wavelet in §4. After that, in §5 we derive the well-separated conditions

for multicomponent signals based on the adaptive CWT. We propose a method and an algorithm

to select the parameter for blind source signal separation in §6. We provide the experimental

results in §7. Finally we give the conclusion in §8.
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2 Synchrosqueezing transform (SST)

A function ψ(t) ∈ L2(R) is called a continuous (or an admissible) wavelet if it satisfies (see e.g.

[50, 15]) the admissible condition:

0 < Cψ =

∫ ∞
−∞
|ψ̂(ξ)|2 dξ

|ξ|
<∞, (4)

where ψ̂ is the Fourier transform of ψ(t), defined by

ψ̂(ξ) =

∫ ∞
−∞

ψ(t)e−i2πξtdt.

Denote ψa,b(t) = 1
aψ
(
t−b
a

)
. The continuous wavelet transform (CWT) of a signal x(t) ∈ L2(R)

with a continuous wavelet ψ is defined by

Wx(a, b) = 〈x, ψa,b〉 =

∫ ∞
−∞

x(t)
1

a
ψ
( t− b

a

)
dt. (5)

The variables a and b are called the scale and time variables respectively. The signal x(t) can be

recovered by the inverse wavelet transform (see e.g. [49, 50, 15, 51])

x(t) =
1

Cψ

∫ ∞
−∞

∫ ∞
−∞

Wx(a, b)ψa,b(t)db
da

|a|
.

A function x(t) is called an analytic signal if it satisfies x̂(ξ) = 0 for ξ < 0. In this paper, we

consider analytic continuous wavelets. In addition, we assume ψ also satisfies

0 6= cψ =

∫ ∞
0

ψ̂(ξ)
dξ

ξ
<∞. (6)

For an analytic signal x(t) ∈ L2(R), it can be recovered by (refer to [21, 22]):

x(b) =
1

cψ

∫ ∞
0

Wx(a, b)
da

a
, (7)

where cψ is defined by (6). In addition, a real signal x(t) ∈ L2(R) can be recovered by the

following formula (see [22]):

x(b) = Re
( 2

cψ

∫ ∞
0

Wx(a, b)
da

a

)
. (8)

The Fourier transform and the CWT given above can be applied to a slowly growing x(t) if

the wavelet function ψ has certain decay order as |t| → ∞. In addition, the above two formulas

still hold for such a x(t). Recall that a function x(t) is called a slowly growing function if there

is a nonnegative integer L such that x(t)/(1 + |t|L) is bounded on (−∞,∞). We will assume

components of x(t) in (1) are all slowly growing.
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As mentioned earlier, the parameter σ of the “bump wavelet” in (2) or Morlet’s wavelet in (3)

controls the shape of ψ and has effects on the CWT of a signal. For a simple multicomponent

signal

x(t) =

K∑
k=1

Ak cos(2πckt
)

(9)

with positive Ak, ck and ck 6= ck+1, if σ is large then the CWT of the components Ak cos
(
2πckt

)
in |Wx(a, b)| with the “bump wavelet” will not overlap. On the other hand, for a superposition

(1) of AHMs with φ′k(t) 6=constant, a larger σ does not necessarily provide a better separation of

AHMs, as can be illustrated by the following example with Morlet’s wavelet. Let

x(t) = ei2π(9t+5t2) + ei2π(13t+10t2), 0 ≤ t ≤ 1, (10)

which is sampled uniformly with 128 sample points. The CWT of x(t) with Morlet’s wavelet with

σ = 1, µ = 1 and σ = 2, µ = 1 are shown in the left and middle panels of Fig.1 respectively.

Observe that the wavelet with a larger σ results in a more blurred representation of x(t) in the

time-scale plane.

Figure 1: The CWT |Wx(a, b)| of x(t) in (10) by using Morlet’s wavelet ψ with σ = 1, µ = 1 (Left picture)

and with σ = 2, µ = 1 (Middle picture). The picture on the right shows |Tx(ξ, b)|, the SST of x(t) with

σ = 1, µ = 1.

To achieve a sharper time-frequency representation of a signal, the synchrosqueezed wavelet

transform (SST) reassigns the scale variable a to a frequency variable. For a given signal x(t), let

ωx(a, b) be the phase transformation [22] (also called the reference IF function in [27]) defined by

ωx(a, b) =
1

i2π

∂

∂b
log |Wx(a, b)| =

∂
∂bWx(a, b)

i2πWx(a, b)
, for Wx(a, b) 6= 0. (11)

SST is to transform the CWT Wx(a, b) of x(t) to a quantity, denoted by Tx(ξ, b), on the time-

frequency plane as defined by

Tx(ξ, b) =

∫
{a∈R+: Wx(a,b)6=0}

Wx(a, b)δ
(
ωx(a, b)− ξ

)da
a
, (12)
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where ξ is the frequency variable. The reader is referred to [22] for more details. As an example,

the right picture in Fig.1 shows the SST of x(t) given in (10). It displays a sharp contrast of SST

against CWT in terms of the power in separating the components of the signal x(t).

The input signal x(t) can be recovered from its SST in a similar way. For an analytic x(t) ∈
L2(R), by (7), we have

x(b) =
1

cψ

∫ ∞
0

Tx(ξ, b)dξ; (13)

and for a real-valued x(t) ∈ L2(R), by (8)

x(b) = Re
( 2

cψ

∫ ∞
0

Tx(ξ, b)dξ
)
, (14)

where cψ is the constant defined by (6).

For a multicomponent signal x(t) in (1) with A0(t) = 0, when Ak(t), φk(t) satisfy certain

conditions (see [22]), each component xk(b) can be recovered from SST:

xk(b) ≈ Re
( 2

cψ

∫
|ξ−φ′k(b)|<Γ1

Tx(ξ, b)dξ
)
, (15)

for certain Γ1 > 0.

Figure 2: Left: |Wr(a, b)|, CWT of r(t) = r1(t) + r2(t) = cos
(
2π(5t)

)
+ 2 cos

(
2π(25t)

)
; Middle: ωr(a, b)

with γ = 10−5; Right: |Tr(ξ, b)|, the SST of r(t).

Here is an example of SST. Let r(t) = r1(t) + r2(t) with r1(t) = cos
(
2π(5t)

)
and r2(t) =

2 cos
(
2π(25t)

)
. The sample points are tn = n

64 , 0 ≤ n ≤ 63. Fig.2 shows the CWT of r(t) with

Morlet’s wavelet of σ = 1 and µ = 1, the phase transformation ωr(a, b) with γ = 10−5, and the

SST of r(t). The two bumps in the left picture of Fig.2 correspond to the CWTs of r1(t) and r2(t)

respectively. The phase transformation ωr(a, b) in the middle picture of Fig.2 takes constant values

5 and 25 respectively for a in two intervals and for all b. These are the IFs of the two components

of r(t). Note also from this picture that at the boundary a0 between the two intervals of the scale

variable, ωr(a0, b) have large values for some b. However, since the corresponding Wr(a0, b) is

small, Wr(a0, b)a
−1
0 is also small. Thus we still have two sharp representations of the IFs of r1(t)

and r2(t) through SST, as shown in the right picture of Fig.2.

7



3 CWT and SST with a time-varying parameter

3.1 CWT with a time-varying parameter

We consider continuous wavelets of the form

ψσ(t) =
1

σ
g(
t

σ
)ei2πµt − 1

σ
g(
t

σ
)cσ(µ), (16)

or, in the frequency domain,

ψ̂σ(ξ) = ĝ
(
σ(ξ − µ)

)
− cσ(µ)ĝ(σξ), (17)

where µ > 0, g is a function in L2(R) with certain decaying order as t→∞, and cσ(µ) is a constant

such that ψ̂σ(0) = 0. If ĝ
(
−σµ) = 0, then we just set cσ(µ) = 0; otherwise, if in addition ĝ(0) 6= 0,

we let cσ(µ) = ĝ(−σµ)/ĝ(0). For example, if g(t) is given by ĝ(ξ) = e
1− 1

1−ξ2 χ(−1,1)(ξ), then ψσ is

the “bump wavelet” defined in (2), and if g(t) = 1√
2π
e−

t2

2 , then ψσ is Morlet’s wavelet in (3).

In the following, we will assume our signal x(t) to be a slowly increasing function. The CWT

of such an x(t) with the ψσ considered above is well-defined as long as g(t) decays to 0 fast enough

as t→∞.

As observed from Fig.1, the choice of the parameter σ for the wavelet ψσ affects the represen-

tation of the CWT. In this paper, we introduce a CWT with time-varying σ. More specifically,

let ψσ be a continuous wavelet defined by (16) and x(t) be a given signal (a slowly increasing

function). The CWT of x(t) with a time-varying parameter is defined by

W̃x(a, b) = Wx(a, b, σ(b)) :=

∫ ∞
−∞

x(t)
1

a
ψσ(b)

( t− b
a

)
dt. (18)

where σ is a positive function of b. We call W̃x(a, b) or Wx(a, b, σ(b)), the adaptive CWT of x(t)

with ψσ. Note that we sometimes also use Wx(a, b, σ(b)) to denote the adaptive CWT of x(t) to

emphasize that the parameter σ depends on the time variable b. One can easily obtain

Wx(a, b, σ(b)) =

∫ ∞
−∞

x̂(ξ)ψ̂σ(b)

(
aξ
)
ei2πbξdξ.

Thus, if ψσ or x(t) is analytic, then we have for a > 0,

Wx(a, b, σ(b)) =

∫ ∞
0

x̂(ξ)ψ̂σ(b)

(
aξ
)
ei2πbξdξ. (19)

As shown in the following proposition, the original signal x(b) can be recovered fromWx(a, b, σ(b))

by formulas similar to (7) and (8).

Proposition 1. Let Wx(a, b, σ(b)) be the time-varying CWT of a signal x(t) defined by (18).

Then the following hold.
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(1). If x(t) is analytic, then it can be recovered by

x(b) =
1

cψ(b)

∫ ∞
0

Wx(a, b, σ(b))
da

a
, (20)

where cψ(b) is defined by

cψ(b) =

∫ ∞
0

ψ̂σ(b)(ξ)
dξ

ξ
(21)

(2). In addition, if ψσ is analytic, then for real-valued x(t) we have

x(b) = Re
( 2

cψ(b)

∫ ∞
0

Wx(a, b, σ(b))
da

a

)
. (22)

The proof Proposition 1 is straightforward in the sense that it can be followed directly from

that in [22] for the conventional CWT. For self-containedness, it is provided in Appendix.

We remark that, numerically, the second terms in (16) and (17) , 1
σg( tσ )cσ(µ) and cσ(µ)ĝ(σξ),

are generally very small. For example, if ψσ is Morlet’s wavelet, the second term in (17) equals

e−2σ2π2(ξ2+µ2). When µ = 1 and σ = 1, e−2σ2π2(ξ2+µ2) ≤ exp(−2π2) = 2.6753× 10−9, a negligible

quantity. Thus for the simplicity of presentation, we will assume

ψσ(t) =
1

σ
g(
t

σ
)ei2πµt (23)

or equivalently

ψ̂σ(ξ) = ĝ(σ(ξ − µ)). (24)

We note that the improper integrals in Proposition 1 will converge with this simpler ψσ if we

exclude a small neighborhood of the origin in integrations and the numerical results are close

approximations of original integrals.

3.2 SST with a time-varying parameter

We now define the phase transformation ωadpx (a, b) associated with the adaptive CWT. Let ψσ(t)

be the continuous wavelet defined by (23). Let ψ2
σ(t) = t

σ2 g
′( tσ )ei2πµt. In the following we use

W̃ψ2

x (a, b) to denote the CWT defined by (18) with ψσ replaced by ψ2
σ, namely,

W̃ψ2

x (a, b) :=

∫ ∞
−∞

x(t)
1

a
ψ2
σ(b)

( t− b
a

)
dt =

∫ ∞
−∞

x(b+ at)
t

σ2(b)
g′(

t

σ(b)
)e−i2πµtdt. (25)

One can obtain that

ψ̂2
σ(ξ) = −ĝ(σ(ξ − µ))− σ(ξ − µ)

(
ĝ
)′

(σ(ξ − µ)).

To motivate the definition of the phase transformation ωadpx (a, b) to be given below, let us look

at a simple example x(t) = s(t) = Aei2πct. From

W̃s(a, b) =

∫ ∞
−∞

s(b+ at)ψσ(b)(t)dt = A

∫ ∞
−∞

ei2πc(b+at)
1

σ(b)
g(

t

σ(b)
)e−i2πµtdt,

9



we have

∂

∂b
W̃s(a, b) = A

∫ ∞
−∞

(i2πc)ei2πc(b+at)
1

σ(b)
g(

t

σ(b)
)e−i2πµtdt

+A

∫ ∞
−∞

ei2πc(b+at)(− σ
′(b)

σ(b)2
)g(

t

σ(b)
)e−i2πµtdt+A

∫ ∞
−∞

ei2πc(b+at)(−σ
′(b)t

σ(b)3
)g′(

t

σ(b)
)e−i2πµtdt

= i2πc W̃s(a, b)−
σ′(b)

σ(b)
W̃s(a, b)−

σ′(b)

σ(b)
W̃ψ2

s (a, b).

Thus, if W̃s(a, b) 6= 0, we have

∂
∂bW̃s(a, b)

i2πW̃s(a, b)
= c− σ′(b)

i2πσ(b)
− σ′(b)

σ(b)

W̃ψ2

s (a, b)

i2πW̃s(a, b)
. (26)

Therefore, the IF of s(t), which is c, can be obtained by

c = Re
{ ∂

∂bW̃s(a, b)

i2πW̃s(a, b)

}
+
σ′(b)

σ(b)
Re
{ W̃ψ2

s (a, b)

i2πW̃s(a, b)

}
.

Following this example, we define, for a general x(t) and at (a, b) for which W̃x(a, b) 6= 0, the

phase transformation or the reference IF function:

ωadpx (a, b) = Re
{∂b(W̃x(a, b)

)
i2πW̃x(a, b)

}
+
σ′(b)

σ(b)
Re
{ W̃ψ2

x (a, b)

i2πW̃x(a, b)

}
, for W̃x(a, b) 6= 0. (27)

The SST with a time-varying parameter (also called the adaptive SST of x(t)) is defined by

T adpx (ξ, b) = Tx(ξ, b, σ(b)) :=

∫
{a∈R+: W̃x(a,b)6=0}

W̃x(a, b)δ
(
ωadpx (a, b)− ξ

)da
a
, (28)

where ξ is the frequency variable. For an analytic x(t) ∈ L2(R), by (20), we have

x(b) =
1

cψ(b)

∫ ∞
0

T adpx (ξ, b)dξ; (29)

and for a real-valued x(t) ∈ L2(R), by (22)

x(b) = Re
( 2

cψ(b)

∫ ∞
0

T adpx (ξ, b)dξ
)
, (30)

where cψ(b) is defined by (21). In addition, we can use the following formula to recover the kth

component xk(b) of a multicomponent signal (satisfying certain conditions) from the adaptive

SST:

xk(b) ≈ Re
( 2

cψ(b)

∫
|ξ−φ′k(b)|<Γ2

T adpx (ξ, b)dξ
)
, (31)

for certain Γ2 > 0.
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Here we remark that if ψσ is a simplified version of Morlet’s wavelet given by

ψ̂σ(ξ) = e−2π2σ2(ξ−µ)2 , (32)

then

ψ̂2
σ(ξ) = (4π2σ2(ξ − µ)2 − 1)e−2π2σ2(ξ−µ)2 .

In this case,

W̃ψ2

s (a, b) =

∫ ∞
−∞

ŝ(ξ)ψ̂2
σ(b)(aξ)e

i2πbξdξ

= Aψ̂2
σ(b)(ac) e

i2πbc = A(4π2σ2(b)(ac− µ)2 − 1)e−2π2σ2(b)(ξ−µ)2

= (4π2σ2(b)(ac− µ)2 − 1)W̃s(a, b).

Thus
W̃ψ2

s (a, b)

i2πW̃s(a, b)
=

1

i2π
(4π2σ2(ac− µ)2 − 1).

Therefore, the second term on the right-hand side of (27) is zero, and hence, one may define

ω̃x(a, b) = Re
{∂b(W̃x(a, b)

)
i2πW̃x(a, b)

}
, for W̃x(a, b) 6= 0. (33)

as the phase transformation.

3.3 Second-order SST with a time-varying parameter

The second-order SST was introduced in [34]. The main idea is to define a new phase transfor-

mation ω2nd
x which is associated with the 2nd order partial derivatives of the CWT of x(t) such

that when x(t) is a linear frequency modulation (LFM) signal (linear chirp), then ω2nd
x is exactly

the IF of x(t). We say s(t) is an LFM signal if

s(t) = A(t)ei2πφ(t) = Aept+
q
2
t2ei2π(ct+ 1

2
rt2) (34)

with phase function φ(t) = ct+ 1
2rt

2, the IF φ′(t) = c+ rt, chirp rate φ′′(t) = r, the instantaneous

amplitude (IA) A(t) = Aept+
q
2
t2 , where p, q are real numbers and |p| and |q| are much smaller

than c, which is positive.

Now we show how to derive the phase transformation ω2nd
s . Note that our derivation is slightly

different from that in [34] and [35], where it was based on reassignment operators. The formulation

for ω2nd
s provided here is also slightly different from that in [35]. Our derivation can easily be

generalized to the case of adaptive CWT and SST.

For a given wavelet ψ, let Ws(a, b) be the CWT of a signal s(t) with ψ as defined in (5).

For ψ1(t) = tψ(t), let Wψ1
s (a, b) denote the CWT of s(t) with ψ1(t), namely, the integral on the

right-hand side of (5) with x(t) and ψ(t) replaced by s(t) and ψ1(t) respectively.

11



Observe that for s(t) given by (34)

s′(t) =
(
p+ qt+ i2π(c+ rt)

)
s(t).

Thus from

Ws(a, b) =

∫ ∞
−∞

s(b+ at) ψ(t)dt,

we have

∂

∂b
Ws(a, b) =

∫ ∞
−∞

s′(b+ at) ψ(t)dt

=

∫ ∞
−∞

(
p+ q(b+ at) + i2π(c+ rb+ rat)

)
s(b+ at) ψ(t)dt

=
(
p+ qb+ i2π(c+ rb)

)
Ws(a, b) + (q + i2πr)a Wψ1

s (a, b).

Thus at (a, b) on which Ws(a, b) 6= 0, we have

∂
∂bWs(a, b)

Ws(a, b)
= p+ qb+ i2π(c+ rb) + (q + i2πr)a

Wψ1
s (a, b)

Ws(a, b)
. (35)

Taking partial derivative ∂
∂a to both sides of (35), we have

∂

∂a

( ∂
∂bWs(a, b)

Ws(a, b)

)
= (q + i2πr)U(a, b),

where we use U(a, b) to denote

U(a, b) =
∂

∂a

(aWψ1
s (a, b)

Ws(a, b)

)
=
Wψ1
s (a, b)

Ws(a, b)
+ a

∂

∂a

(Wψ1
s (a, b)

Ws(a, b)

)
.

Thus if U(a, b) 6= 0, then

q + i2πr =
1

U(a, b)

∂

∂a

( ∂
∂bWs(a, b)

Ws(a, b)

)
.

Back to (35), we have

∂
∂bWs(a, b)

Ws(a, b)
= p+ qb+ i2π(c+ rb) + a

Wψ1
s (a, b)

Ws(a, b)U(a, b)

∂

∂a

( ∂
∂bWs(a, b)

Ws(a, b)

)
.

Therefore,

φ′(b) = c+ rb = Re
{ ∂

∂bWs(a, b)

i2πWs(a, b)

}
− a Re

{ Wψ1
s (a, b)

Ws(a, b)U(a, b)

∂

∂a

( ∂
∂bWs(a, b)

i2πWs(a, b)

)}
.

Hence, one may define the phase transformation as

ω2nd
s (a, b) =

 Re
{ ∂

∂b
Ws(a,b)

i2πWs(a,b)

}
− a Re

{
W
ψ1
s (a,b)

Ws(a,b)U(a,b)
∂
∂a

( ∂
∂b
Ws(a,b)

i2πWs(a,b)

)}
, if U(a, b) 6= 0,Ws(a, b) 6= 0,

Re
{ ∂

∂b
Ws(a,b)

i2πWs(a,b)

}
, if U(a, b) = 0,Ws(a, b) 6= 0.

(36)
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From the above derivation, we know ω2nd
s (a, b) is exactly the IF φ′(t) of s(t) if s(t) is an LFM

signal given by (34). For a signal x(t), with the phase transformation ω2nd
x (a, b) in (36), the

second-order SST of a signal x(t) is defined by

T 2nd
x (ξ, b) :=

∫
{a∈R+: Wx(a,b)6=0}

Wx(a, b)δ
(
ω2nd
x (a, b)− ξ

)da
a
, (37)

where ξ is the frequency variable.

Next we consider the CWT with a time-varying parameter. Let ψσ(t) be the continuous

wavelet defined by (23). As in Section 3.2, denote ψ2
σ(t) = t

σ2 g
′( tσ )ei2πµt, and let W̃ψ2

s (a, b)

denote the adaptive CWT defined by (25). In addition, we define

ψ1
σ(t) =

t

σ
ψσ(t) =

t

σ2
g(
t

σ
)ei2πµt

and we use W̃ψ1

s (a, b) to denote the CWT defined by (18) with ψσ(b) replaced by ψ1
σ(b), namely,

W̃ψ1

s (a, b) :=

∫ ∞
−∞

s(t)
1

a
ψ1
σ(b)

( t− b
a

)
dt =

∫ ∞
−∞

s(b+ at)
t

σ2(b)
g(

t

σ(b)
)e−i2πµtdt. (38)

One can obtain that

ψ̂1
σ(ξ) =

i

2π

(
ĝ
)′

(σ(ξ − µ)).

In particular, if ψσ is Morlet’s wavelet given by (32), then

ψ̂1
σ(ξ) = −i2πσ(ξ − µ)e−2π2σ2(ξ−µ)2 .

For a signal x(t), in the following we define the phase transformation as

ωadp,2ndx (a, b) =



Re
{ ∂

∂b
W̃x(a,b)

i2πW̃x(a,b)

}
+ σ′(b)

σ(b) Re
{

W̃ψ2

x (a,b)

i2πW̃x(a,b)

}
− a Re

{
W̃ψ1

x (a,b)

i2πW̃x(a,b)
R0(a, b)

}
,

if ∂
∂a

(
aW̃

ψ1

x (a,b)

W̃x(a,b)

)
6= 0 and W̃x(a, b) 6= 0;

Re
{ ∂

∂b
W̃x(a,b)

i2πW̃x(a,b)

}
+ σ′(b)

σ(b) Re
{

W̃ψ2

x (a,b)

i2πW̃x(a,b)

}
, if ∂

∂a

(
aW̃

ψ1

x (a,b)

W̃x(a,b)

)
= 0, W̃x(a, b) 6= 0,

(39)

where

R0(a, b) =
1

∂
∂a

(
aW̃

ψ1
x (a,b)

W̃x(a,b)

){ ∂

∂a

( ∂
∂bW̃x(a, b)

W̃x(a, b)

)
+
σ′(b)

σ(b)

∂

∂a

(W̃ψ2

x (a, b)

W̃x(a, b)

)}
. (40)

We have the following theorem. Its proof is given in Appendix.

Theorem 1. If x(t) is an LFM signal given by (34), then at (a, b) where ∂
∂a

(
aW̃

ψ1

x (a,b)

W̃x(a,b)

)
6= 0 and

W̃x(a, b) 6= 0, ωadp,2ndx (a, b) defined by (39) is the IF of x(t), namely ωadp,2ndx (a, b) = c+ rb.
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With the phase transformation ωadp,2ndx (a, b) in (39), we define the second-order SST with a

time-varying parameter (also called the second-order adaptive SST) of a signal x(t) as in (28):

T adp,2ndx (ξ, b) = T 2nd
x (ξ, b, σ(b)) :=

∫
{a∈R+: Wx(a,b,σ(b))6=0}

Wx(a, b, σ(b))δ
(
ωadp,2ndx (a, b)− ξ

)da
a
,

(41)

where ξ is the frequency variable. We also have the reconstruction formulas for x(t) and xk(t)

similar to (29), (30) and (31) with Tx(ξ, b, σ(b)) replaced by T 2nd
x (ξ, b, σ(b)).

4 Support zones of CWTs of linear frequency modulation signals

In this section we consider the support zone of CWT in the time-scale plane. The “bump wavelet”

ψbump is bandlimited (namely, ψ̂bump is compactly supported), and hence it has a better frequency

localization than Morlet’s wavelet. On the other hand, Morlet’s wavelet as given in (3) has the

explicit form

ψMor(t) =
1

σ
√

2π
e
−( t√

2σ
)2

(ei2πµt − e−2π2σ2µ2). (42)

We see that, unlike the bump wavelet, this wavelet enjoys a nice localization property in both the

time and frequency domains. We will focus on Morlet’s wavelet below. Moreover, since the second

term in (3) and (42) is small for µσ ≥ 1, as was observed in Section 3.1, it is commonly dropped

in numerical signal processing. Hence in this and the following sections, unless it is specifically

stated, Morlet’s wavelet refers to its simplified version ψσ defined by (32) or its analytic version

defined by

ψ̂σ(ξ) =

{
e−2π2σ2(ξ−µ)2 , if ξ > 0,

0, if ξ ≤ 0.
(43)

Now let x(t) be a multicomponent signal as given in (1) with A0(t) = 0. Recall the fact (see

the discussion in [39]) that if the CWTs Wxk−1
(a, b) and Wxk(a, b) of two components xk−1(t) and

xk(t) are mixed, then the SST approach is unable to separate these components. In addition, as

observed from Fig.1 that the choice of the parameter σ for the wavelet affects the representation of

the CWT. Our goal is to formulate the conditions (called well-separated conditions) such that we

can find (if possible) a suitable positive function σ(b) of b with which the corresponding adaptive

CWTs of different components xk(t) defined in (18) are well separated, and hence, the associated

adaptive SST can separate all components xk(t) of x(t).

To study the separability of CWTs (including CWTs with a time-varying parameter) of differ-

ent components xk(t) of x(t), we need to consider the support zone of Wxk(a, b) in the time-scale

plane, the region outside which Wxk(a, b) ≈ 0 . For s(t) = A cos(2πct), for example, its CWT

Ws(a, b) with an analytic wavelet ψ is given by

Ws(a, b) =
1

2
A ψ̂

(
ac
)
ei2πbc.
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Thus the support zone of Ws(a, b) in the time-scale plane is determined by the region outside

which ψ̂(ξ) ≈ 0. Therefore, first of all, we need to define the “support” of ψ̂. For the “bump

wavelet” ψbump, it is bandlimited, and the support of ψ̂bump is [− 1
σ ,

1
σ ]. If ψ is non-bandlimited,

the corresponding CWTs Wxk−1
(a, b) and Wxk(a, b) overlap theoretically even for the case when

xk−1(t) and xk(t) are sinusoidal signals. For example, the CWTs Wr1(a, b) and Wr2(a, b) of r1(t)

and r2(t) with Morlet’s wavelet in Fig.2 overlap. However, the values of these CWTs are very

small over the overlapping region and are hardly noticeable. Instead, what we can see in Fig.2

are two bumps lying in two separated zones of the time-scale plane. In such a case we can treat

Wxk(a, b) as zero whenever its value is small. We describe this mathematically. Given threshold

0 < τ < 1, if a function h(ξ) satisfies |h(ξ)|/maxξ h(ξ) < τ for |ξ| ≥ ξ0, then we say h(ξ) is

“supported” in [−ξ0, ξ0]. In particular, for Gaussian function g(ξ) = e−2π2(ξ−µ)2 , if g(µ+ α) = τ

then we have

α =
1

2π

√
2 ln(1/τ). (44)

Thus we regard that g vanishes outside [µ−α, µ+α] and hence g is “supported“ in [µ−α, µ+α].

We use Lg to denote the length of the “support” of g, i.e.

Lg = 2α.

We also call Lg the duration of g. For ψ̂σ defined by (32), ψ̂σ is “supported” in [µ− α
σ , µ+ α

σ ] and

hence, L
ψ̂σ

= 2α
σ . Since we hope that ψσ is analytic, it is desirable that µ− α

σ ≥ 0. Thus, in the

following, we always assume that

σ ≥ α

µ
.

Recall that for s(t) = A cos(2πct), its CWT with ψσ(t) defined by (43) is

Ws(a, b) =
1

2
A ψ̂σ

(
ac
)
ei2πbc.

Since ψ̂σ
(
ac
)

is “supported” in µ− α
σ ≤ ac ≤ µ+ α

σ , Ws(a, b) concentrates around a = µ
c and lies

within the zone (a strip) of the time-scale plane of (a, b):

µ− α/σ
c

≤ a ≤ µ+ α/σ

c
(45)

for all b.

Next we consider LFM signals (linear chirps). For simplicity of presentation, we consider the

case that A(t) in (34) is a constant. Namely, we consider

s(t) = Aei2π(ct+ 1
2
rt2). (46)

First we find the CWT of s(t). To this regard, we need the following formula.
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Lemma 1. ([12, 52]) For real α, β and ω with α > 0,∫ ∞
−∞

e−(α+iβ)t2+iωtdt =

√
π√

α+ iβ
e
− ω2

4(α+iβ) .

Next propostion gives the CWT of LMF signal s(t) with ψσ.

Proposition 2. Let s(t) be the LFM signal defined by (46). Then the CWT of s(t) with ψσ given

by (32) is

Ws(a, b) =
A√

1− i2πσ2a2r
ei2π

(
cb+ r

2
b2
)
h(c+ rb), (47)

where

h(ξ) = e
− 2π2(aσ)2

1+(2πra2σ2)2
(ξ−µ

a
)2(1+i2πa2σ2r)

.

The proof of Proposition 2 is presented in Appendix.

Observe that |h(ξ)| is a Gaussian function with duration

L|h| = 2α

√
1 + (2πra2σ2)2

(aσ)2
= 2α

√
1

(aσ)2
+ (2πraσ)2.

Thus the ridge of Ws(a, b) concentrates around c + rb = µ
a in the time-scale plane of (a, b), and

Ws(a, b) lies within the zone of time-scale plane:

−1

2
L|h| ≤ c+ rb− µ

a
≤ 1

2
L|h|,

or equivalently

c+ rb− α

√
1

(aσ)2
+ (2πraσ)2 ≤ µ

a
≤ c+ rb+ α

√
1

(aσ)2
+ (2πraσ)2. (48)

We call the region in the time-scale plane given by (48) the time-scale zone of Ws(a, b).

L|h| reaches its minimum when 1
(aσ)2

= (2πraσ)2, namely,

σ =
1

a
√

2π|r|
=

1

a
√

2π|φ′′(b)|
. (49)

In this case L|h| = 4α
√
π|r|, and the time-scale zone of Ws(a, b) is

c+ rb− 2α
√
π|r| ≤ µ

a
≤ c+ rb+ 2α

√
π|r|.

Observe that σ in (49) depends on both a and b. Our goal is to design a method to select

the parameter σ = σ(b) depending on b only so that (i) the corresponding time-varying CWTs

of the components of a multicomponent signal can be separated in the time-scale plane and the

SST defined by (28) with this σ(b) has a sharp representation and (ii) the components can be

recovered accurately from the SST with σ(b) by (31). The obtained time-scale zone in (48) for a

linear chirp helps us to formulate the well-separated conditions and develop the method to find

suitable σ(b), which are the problems we will focus on in the next two sections.
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5 Well-separated conditions for multicomponent signals

In this section we derive the well-separated conditions for multicomponent signals based on the

adaptive CWT. First, we consider the sinusoidal signal model. Recall from §4 that the CWT of

x(t) = Aei2πct with ψσ(t) defined by (43) is supported in the zone of the time-scale plane given

by (45). For x(t) =
∑K

k=1 xk(t) =
∑K

k=1Ake
i2πckt with ck−1 < ck, its CWT is

Wx(a, b) =
K∑
k=1

Akψ̂σ
(
ack
)
ei2πbck .

Since the CWT of the k-component lies within the zone µ−α/σ
ck

≤ a ≤ µ+α/σ
ck

of the time-scale

plane, the components of x(t) will be well-separated in the time-scale plane if

µ+ α/σ

ck
≤ µ− α/σ

ck−1
,

or equivalently
ck − ck−1

ck + ck−1
≥ α

µσ
, for k = 2, 3, · · · ,K.

Hence, we can separate the components of x(t) in the time-scale plane if we choose σ such that

σ ≥ α

µ

ck + ck−1

ck − ck−1
, for k = 2, 3, · · · ,K.

More general, for x(t) given by

x(t) =
K∑
k=1

xk(t) =
K∑
k=1

Ak(t)e
i2πφk(t), (50)

if for eack k, the CWT of xk(t) with ψσ, which is∫ ∞
−∞

Ak(b+ at)ei2πφk(at+b)ψσ(t)dt, (51)

can be well-approximated by∫ ∞
−∞

Ak(b)e
i2π(φk(b)+φ′k(b)at)ψσ(t)dt = Ak(b)ψ̂σ

(
aφ′k(b)

)
ei2πφk(b), (52)

then the CWTs of the components xk(t), k = 1, · · · ,K, are separated in the time-scale plane

provided that

σ ≥ α

µ

φ′k(b) + φ′k−1(b)

φ′k(b)− φ′k−1(b)
, for k = 2, 3, · · · ,K (53)

for each b. The condition in (53) is the well-separated condition based on the sinusoidal signal

model.
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The error bounds derived in [22] imply that for a signal, its synchrosqueezed representation is

sharper when the window width (in time) of the continuous wavelet is smaller. This fact was also

noticed in our various experiments. The parameter σ is the window width (in time) of ψσ (up

to a constant). Thus we choose the smallest σ satisfying (53). Hence, we propose the sinusoidal

signal-based choice for σ, denoted by σ1(b), to be

σ1(b) = max
2≤k≤K

{α
µ

φ′k(b) + φ′k−1(b)

φ′k(b)− φ′k−1(b)

}
. (54)

Figure 3: Time-scale zone (“support”) of Wxk
(a, b)

Next we consider the linear chirp model. More precisely, we consider x(t) =
∑K

k=1 xk(t), where

each xk(t) is a linear chirp, namely,

xk(t) = Ake
i2π(ckt+

1
2
rkt

2)

with the phase φk(t) = ckt+ 1
2rkt

2 satisfying φ′k−1(t) < φ′k(t). From (48), the CWT Wxk(a, b) of

xk(t) with ψσ lies within the zone of time-scale plane:

ck + rkb− α

√
1

(aσ)2
+ (2πrkaσ)2 ≤ µ

a
≤ ck + rkb+ α

√
1

(aσ)2
+ (2πrkaσ)2. (55)

The two equalities in (55) give the boundaries uk(b) (upper boundary) and lk(b) (lower boundary)

for the support zone of Wxk(a, b). More precisely, solving the following two equations in (56) for

a gives uk(b) and lk(b) respectively:

ck + rkb− α

√
1

(aσ)2
+ (2πrkaσ)2 =

µ

a
, ck + rkb+ α

√
1

(aσ)2
+ (2πrkaσ)2 =

µ

a
(56)
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See Fig.3 for the time-scale zone of Wxk(a, b). Our goal is to obtain the conditions on φk and

φk−1 under which we can choose σ, depending on b only, such that the support zones of Wxk(a, b),

k = 1, · · · ,K are not overlapped in the time-scale plane, namely, uk(b) and lk(b) satisfy

uk(b) ≤ lk−1(b), k = 2, 3, · · · ,K. (57)

The case shown in Fig.4 is not what we pursue because the condition (57) is invalid with

uk(b), lk−1(b) entangled.

Figure 4: Time-scale zones of Wxk−1
(a, b),Wxk

(a, b)

Observe that√
1

(aσ)2
+ (2π|rk|aσ)2 ≤ 1

aσ
+ 2π|rk|aσ ≤

√
2

√
1

(aσ)2
+ (2π|rk|aσ)2.

In the following we use 1
aσ + 2π|rk|aσ in the place of

√
1

(aσ)2
+ (2π|rk|aσ)2 in equations (55) and

(56). More generally, for x(t) given by (50), if the CWT Wxk(a, b) of xk(t) = Ak(t)e
i2πφk(t) can

be well approximated by∫ ∞
−∞

Ak(b)e
i2ππ

(
φk(b)+φ′k(b)at+ 1

2
φ′′k(b)(at)2

)
ψσ(t)dt, (58)

then Wxk(a, b) lies within a larger zone of time-scale plane defined by:

φ′k(b)− α(
1

aσ
+ 2π|φ′′k(b)|aσ) ≤ µ

a
≤ φ′k(b) + α(

1

aσ
+ 2π|φ′′k(b)|aσ). (59)

Therefore, boundaries a = uk and a = lk of the support zone of Wxk(a, b) are the solutions of the

following two equations respectively:

µ

uk
+ α(

1

ukσ
+ 2π|φ′′k(b)|ukσ) = φ′k(b), (60)

µ

lk
− α(

1

lkσ
+ 2π|φ′′k(b)|lkσ) = φ′k(b). (61)
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One can obtain from (60) and (61) that

uk = uk(b) =
φ′k(b)−

√
φ′k(b)

2 − 8πα(µσ + α)|φ′′k(b)|
4πσα|φ′′k(b)|

=
2(µ+ α

σ )

φ′k(b) +
√
φ′k(b)

2 − 8πα(α+ µσ)|φ′′k(b)|
, (62)

lk = lk(b) =
−φ′k(b) +

√
φ′k(b)

2 + 8πα(µσ − α)|φ′′k(b)|
4πσα|φ′′k(b)|

=
2(µ− α

σ )

φ′k(b) +
√
φ′k(b)

2 + 8πα(µσ − α)|φ′′k(b)|
. (63)

One can verify directly lk(b) ≤ uk(b) for k = 1, 2, · · · ,K. In order to separate the components

of xk(t), we need to choose σ such that the support zones of Wxk−1
(a, b) and Wxk(a, b) do not

overlap, namely (57) holds. By careful and tedious calculations, one can obtain that inequality

(57) with uk(b) and lk(b) given by (62) and (63) can be written as

αk(b)σ
2 − βk(b)σ + γk(b) ≤ 0,

where

αk(b) = 2παµ(|φ′′k(b)|+ |φ′′k−1(b)|)2,

βk(b) =
(
φ′k(b)|φ′′k−1(b)|+ φ′k−1(b)|φ′′k(b)|

)(
φ′k(b)− φ′k−1(b)

)
+ 4πα2

(
φ′′k(b)

2 − φ′′k−1(b)2
)
,

γk(b) =
α

µ

{(
φ′k(b)|φ′′k−1(b)|+ φ′k−1(b)|φ′′k(b)|

)(
φ′k(b) + φ′k−1(b)

)
+ 2πα2

(
|φ′′k(b)| − |φ′′k−1(b)|

)2}
.

Thus, if

Υk(b) := βk(b)
2 − 4αk(b)γk(b)

=
(
φ′k(b)|φ′′k−1(b)|+ φ′k−1(b)|φ′′k(b)|

)2{(
φ′k(b)− φ′k−1(b)

)2 − 16πα2
(
|φ′′k(b)|+ |φ′′k−1(b)|

)}
≥ 0,

then (57) holds if and only if σ satisfies

βk(b)−
√

Υk(b)

2αk(b)
≤ σ ≤

βk(b) +
√

Υk(b)

2αk(b)
. (64)

Otherwise, if Υk(b) < 0, then there is no suitable solution of the parameter σ for (57), which

means that components xk−1(t) and xk(t) of multicomponent signal x(t) cannot be separated in

the time-scale plane. Thus we reach our well-separated conditions of CWTs with a time-varying

σ = σ(b).

Theorem 2. Let x(t) =
∑K

k=1 xk(t), where each xk(t) = Ak(t)e
i2πφk(t) is a linear chirp signal or

its adaptive CWT Wxk(b, a, σ(b)) with ψσ(b) can be well approximated by (58), and φ′k−1(t) < φ′k(t).
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If for any b with |φ′′k(b)|+ |φ′′k−1(b)| 6= 0,

4α
√
π
√
|φ′′k(b)|+ |φ′′k−1(b)| ≤ φ′k(b)− φ′k−1(b), k = 2, · · · ,K, and (65)

max
{α
µ
,
βk(b)−

√
Υk(b)

2αk(b)
: 2 ≤ k ≤ K

}
≤ min

2≤k≤K

{βk(b) +
√

Υk(b)

2αk(b)

}
, (66)

then the components of x(t) are well-separable in time-scale plane in the sense that Wxk(b, a, σ(b)), 1 ≤
k ≤ K with σ(b) chosen to satisfy (64) lie in non-overlapping regions in the time-scale place.

Considering again the fact that a smaller σ results in a sharper synchrosqueezed representation,

we choose the smallest σ(b) such that (64) holds. Hence, we propose the linear chirp signal-based

choice for σ, denoted by σ2(b), to be

σ2(b) =


max

{
α
µ ,

βk(b)−
√

Υk(b)

2αk(b) : 2 ≤ k ≤ K
}
, if |φ′′k(b)|+ |φ′′k−1(b)| 6= 0,

max
{
α
µ

φ′k(b)+φ′k−1(b)

φ′k(b)−φ′k−1(b)
: 2 ≤ k ≤ K

}
, if φ′′k(b) = φ′′k−1(b) = 0.

(67)

Next we show some experiment results. Let z(t) be a signal with two linear chirps:

z(t) = z1(t) + z2(t) = cos
(
2π(c1 +

1

2
r1t)t

)
+ cos

(
2π(c2 +

1

2
r2t)t

)
, t ∈ [0, 1], (68)

where the starting frequencies: c1 = 12, c2 = 34, and the chip rates: r1 = 50, r2 = 64. Here z(t) is

sampled uniformly with N = 256 sample points. We let µ in Morlet’s wavelet ψα be 1. The scale

variable a is discretized as aj = 2j/nν∆t with nν = 32, j = 1, 2, · · · , nν log2N . We choose τ in

(67) to be 1/5. Note that we set the same values of µ, nν and τ for all the following experiments.

Fig.5 (top-right) shows the waveform of z(t) in (68). The left figure in the second row also

shows the boundaries l1 and u2, namely the low boundary of z1(t) and upper boundary of z2(t) by

(63) and (62) when σ = 1. So when σ = 1, z1(t) and z2(t) are not separable in the time-scale plane

of CWT except for the part with the time t near 0. By comparing with the actual instantaneous

frequencies φ′1(t) = 12+50t and φ′2(t) = 34+64t of z1(t) and z2(t) resp., the adaptive SST defined

by (28) and second-order adaptive SST defined by (41) with the time-varying parameter proposed

this paper gives sharper and more correct representations of IFs than the conventional SST and

conventional second-order SST with a constant parameter. Moreover, with the proposed choice

for σ in (67), namely σ2(b), the second-order adaptive SST further increases the time-frequency

energy concentration and gives the best time-frequency representation.
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Figure 5: Example of the two-component LFM signal z(t) in (68). Top row: waveform of z(t) (left),

instantaneous frequencies of the z1(t) and z2(t) (middle), time-varying parameters σ1(t) and σ2(t) (right);

Second row: conventional CWT when σ = 1 (left), adaptive CWT with σ1(t) (middle), adaptive CWT with

σ2(t) (right); Third row: conventional SST when σ = 1 (left), adaptive SST with σ1(t) (middle), adaptive

SST with σ2(t) (right); Bottom row: conventional second-order SST when σ = 1 (left), second-order

adaptive SST with σ1(t) (middle), second-order adaptive SST with σ2(t) (right).
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6 An algorithm to select the time-varying parameter σ(b) auto-

matically

Suppose x(t) given by (50) is separable, meaning (65) and (66) hold when an LFM signal is

used to approximate the signal during any local time. If we know φ′k(b) and φ′′k(b), then we can

choose a σ(b) such that it satisfies (64) to define the adaptive CWT and adaptive SST for sharp

representations of xk(t) in the time-frequency plane and accurate recovery of xk(t). However in

practice, we in general have no prior knowledge of φ′k(b) and φ′′k(b). Hence, we need a method to

find a suitable σ(b). In this section, we propose an algorithm for obtaining a σ(b) based on the

LFM-model.

First we have, by (42), that the amplitude of wavelet ψ(a,b) is∣∣ψ(a,b)(t)
∣∣ =

1

aσ
√

2π
e−

1
2σ2a2

(t−b)2 .

Following (44), the duration of ψ(a,b) is defined as,

Lψ(a,b)
= 4πασa.

Next we describe our idea of selecting σ(b) for a multicomponent signal. For a fixed pair (b, σ),

denote W(b,σ)(a) = Wx(a, b, σ), x(t)’s CWT with a time-varying parameter defined by (18). First

of all, for temporarily fixed b and σ, we extract the peaks (local maxima) of |W(b,σ)(a)| above

certain height. More precisely, let Γ3 > 0 is a given threshold. We find local maximum points

a1, a2, · · · , am of |W(b,σ)(a)| at which |W(b,σ)(a)| attains local maxima with

|W(b,σ)(ak)| > Γ3, k = 1, · · · ,m.

Observe that m may depend on b and σ. We assume a1 < a2 < · · · < am. For each local maximum

point ak, we treat (ak, b) as the local maximum of the adaptive CWT Wxk(b, a, σ) of a potential

component, denoted by xk, of x(t). To check whether xk is indeed a component of x(t) or not, we

consider the support interval [gk, hk] for Wxk(a, b, σ) for fixed b and σ with Wxk(a, b, σ) ≈ 0 for

a 6∈ [gk, hk]. If there is no overlap among [gk, hk], [gk−1, hk−1], [gk+1, hk+1], then we decide that

xk(t) is indeed a component of x(t), where [gk−1, hk−1], [gk+1, hk+1] are the support intervals for

CWTs of xk−1 and xk+1 defined similarly. Next we provide a method to estimate gk, hk.

With our LMF model, if the estimated IF φ′k(t) of xk(t) is ĉk + r̂k(t − b), then by (62) and

(63) with φ′k(b) = ĉk, φ
′′
k(b) = r̂k,

hk =
2(µ+ α

σ )

ĉk +
√
ĉ2
k − 8πα(α+ µσ)|r̂k|

, (69)

gk =
2(µ− α

σ )

ĉk +
√
ĉ2
k + 8πα(µσ − α)|r̂k|

. (70)
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Thus to obtain gk, hk, we need to estimate ĉk and the chirp rate r̂k of xk(t). To this regard, we

extract a small piece of curve in the time-scale plane passing through (ak, b) which corresponding

to the local ridge on |W(t,σ)(a)|. More precisely, letting

tk1 = b− 1

2
Lψ(ak,b)

= b− 2πασak, tk2 = b− 1

2
Lψ(ak,b)

= b+ 2πασak,

we define

dk(t) = argmax
a: a is near ak

|W(t,σ)(a)|, t ∈ [tk1, tk2].

Note that dk(b) = ak and (ak, b) is a point lying on the curve in the time-scale of (a, t) given by

L = {(dk(t), t) : t ∈ [tk1, tk2]} = {(a, t) : a = dk(t), t ∈ [tk1, tk2]}.

Most importantly, {|W(t,σ)(a)| : (a, t) ∈ L} is the local ridge on |W(t,σ)(a)| near (ak, b), and thus,

it is also the local ridge on |Wxk(a, t, σ)|. Observe that from the CWT of an LFM signal given by

(47), the local ridge on |Wxk(a, t, σ)| occurs when µ
a = φ′k(t) = ck + rkt, namely the local ridge

on |Wxk(a, t, σ)| is given by {|Wxk(a, t, σ)| : µa = ck + rkt}. Thus the curve L given by a = dk(t)

can be used to estimate ck and rk:

ck + rkt ≈ f̂k(t) = µ/dk(t).

With the LFM model, we use the linear function

fk(t) = r̂k(t− b) + ĉk, t ∈ [tk1, tk2]

to fit f̂k(t). With these ĉk and r̂k, we have hk, gk given in (69) and (70). Especially when r̂k = 0,

recalling the support zone of a sinusoidal signal mode in §5, we have

hk =
µ+ α/σ

ĉk
, gk =

µ− α/σ
ĉk

.

In this way we obtain the collection of support intervals for Wx(a, b, σ) for fixed b and σ:

s = {[g1, h1], · · · , [gm, hm]}. (71)

If adjacent intervals of s do not overlap, namely,

hk ≤ gk+1, for all k = 1, 2, · · · ,m− 1 (72)

holds, then this σ is a right parameter to separate the components and such a σ is a good candidate

which we should consider to select. Otherwise, if a pair of adjacent intervals of s overlap, namely,

(72) does not hold, then this is not the parameter we shall choose and we need to consider a

different σ.

24



In the above description of our idea for the algorithm, we start with a σ and (fixed) b, then we

decide whether this σ is a good candidate to select based on the criterion (72). The choice of the

initial σ plays a critical role for the success of our algorithm due to the fact that on one hand, as

we have mentioned above, a smaller σ will in general result in a sharper representation of SST,

and hence, we should find σ as small as possible such that (72) holds; and on the other hand,

different σ with which (72) holds may result in different number of intervals m in (71) even for

the same time instance b. To keep the number m (the number of components) unchanged when

we search for different σ with a fixed b, the initial σ is required to provide a good estimation on

the number of the components of a multicomponent signal x(t). To this regard, in this paper

we propose to use the Rényi entropy to determine the initial σ(b). The Rényi entropy approach

provides a sharp representation of the CWTs of the components of x(t) and hence, it facilities us

to determine the number of intervals m in (71) when we search for smaller σ(b) for a fixed b.

The Rényi entropy is a method to evaluate the concentration of a time-frequency representation

[53, 54]. For a time-frequency representation D(υ, ξ) of a signal x(t), such as CWT, STFT, SST,

etc. of x(t), the Rényi entropy R`,ζ(t) is defined by

R`,ζ(t) =
1

1− `
log2

∫ t+ζ
t−ζ

∫∞
−∞ |D(ξ, b)|2` dξdb(∫ t+ζ

t−ζ
∫∞
−∞ |D(ξ, b)|2 dξdb

)` , (73)

where ` is a constant and usually ` ≥ 2 (see [54]), ζ is another constant and [t− ζ, t+ ζ] is a local

range around t to be integrated. Taking the CWT W (a, b) of a signal x(t) as an example, and

assuming ` = 2.5 (which is also used for the experiments in our paper), we have

Rζ(t) = −2

3
log2

∫ t+ζ
t−ζ

∫∞
0 |W (a, b)|5 dadb(∫ t+ζ

t−ζ
∫∞

0 |W (a, b)|2 dadb
)2.5 . (74)

Observe that Rζ(t) < 0. Note that the smaller the Rényi entropy, the better the time-frequency

resolution. So for a fixed time t, we can use (74) to find a σ (denoted as σu(t)) with the best

time-frequency concentration of W (a, b, σ), where W (a, b, σ) is the CWT of x(t) with ψσ with a

parameter σ. More precisely, replacing W (a, b) in (74) by W (a, b, σ), we define the Rényi entropy

Rς(t, σ) of W (a, b, σ), and then, obtain

σu(t) = argmin
σ≥α

µ

{Rς(t, σ)} . (75)

We set σu(t) as the upper bound of σ(t) for a fixed t.

With these discussions, we propose an algorithm to estimate σ(t) as follows.

Algorithm 1. (Separability parameter estimation) Let {σj , j = 1, 2, · · · , n} be an uniform

discretization of σ with σ1 > σ2 > · · · > σn >
α
µ and sampling step ∆σ = σj−1− σj . The discrete

sequence s(t), t = t1, t2, · · · , tN (or t = 0, 1, · · · , N − 1) is the signal to be analyzed.
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Step 1. Let t be a given time. Find σu in (75) with σ ∈ {σj , j = 1, 2, · · · , n}.

Step 2. Let s be the set of the intervals given by (71) with σ = σu. Let z = σu. If (72)

holds, then go to Step 3. Otherwise, go to Step 5.

Step 3. Let σ = z − ∆σ. If the number of intervals m in (71) with this new σ remains

unchanged, σ ≥ σn and (72) holds, then go to Step 4. Otherwise, go to Step 5.

Step 4. Repeat Step 3 with z = σ.

Step 5. Let C(t) = z, and repeat Step 1 to Step 4 for the next value of t.

Step 6. Smooth C(t) with a low-pass filter B(t):

σest(t) = (C ∗B)(t). (76)

We call σest(t) the estimation of the separability time-varying parameter σ2(t) in (67). We

repeat Step 1 through Step 5 with t = t1, then t = t2, · · · , and finally t = tN . In Step 6, we use a

low-pass filter B(t) to smooth C(t). This is because of the assumption of the continuity condition

for Ak(t) and φk(t). With the estimated σest(t), we can define the adaptive CWT, the adaptive

SST and the second-order adaptive SST with a time-varying parameter σ(t) = σest(t).

In [47], the time-varying window was proposed for the sharp representation of SST. More

precisely, denote the Rényi entropies of SST and the second-order SST by RSST`,ζ,σ(t) and RSST2
`,ζ,σ (t)

respectively, which are defined by (73) with D(ξ, b) to be the regular SST Tx(ξ, b) and the regular

second-order T 2nd
x (ξ, b) of x(t) (with the phase transformation ω2nd

x (a, b) given in [35]) with a

continuous wavelet ψσ defined by (12) and (37) respectively. The time-varying parameter σ is

obtained by minimizing RSST`,ζ,σ(t) and RSST2
`,ζ,σ (t):

σRe(t) = argmin
σ>0

RSST`, ζ, σ(t), σRe2(t) = argmin
σ>0

RSST2
`, ζ, σ(t). (77)

With σRe(t) and σRe2(t) obtained by (77), the time-varying-window SST with σ = σRe(t) in

[47] is defined by (28) but with the phase transformation ωadpx (a, b) in (28) replaced by the regular

phase transformation (11) for the conventional SST. Similarly, the second-order time-varying-

window SST with σ = σRe2(t) in [47] is defined by (41) but with the phase transformation

ωadp,2ndx (a, b) in (41) replaced by the regular phase transformation defined in [35] for the conven-

tional second-order SST. With PT representing phase transformation, we call them the regular-PT

adaptive SST and the second-order regular-PT adaptive SST, respectively.

We use the proposed algorithm to process the two-component linear chip signal z(t) in (68) and

compare the performance of this algorithm with those of regular SST and regular-PT adaptive

SST in [47]. The different time-varying parameters are shown in the top row of Fig.6, where

26



Figure 6: Example of the two-component LFM signal z(t) in (68). Top-left: various time-varying param-

eters; Top-right: regular-phase-transformation adaptive SST with σRe(t); Bottom-left: adaptive SST with

σest(t); Bottom-right: second-order adaptive SST with σest(t).

σ1(t), σ2(t), σu(t), σest(t), σRe(t) and σRe2(t) are defined by (54), (67), (75), (76) and (77),

respectively. Here we let σ ∈ [0.5, 10] with ∆σ = 0.05, namely σ1 = 10 in Algorithm 1. We

set ` = 2.5, ζ = 4 (sampling points, for discrete signal) and Γ3 = 0.2. Note that we set the

same values of `, ζ, and Γ3 for the other experiments in §7. We use a simple rectangular window

B = {1/5, 1/5, 1/5, 1/5, 1/5} as the low-pass filter. Note that σ1(t) and σ2(t) are the same curves

as those plotted in Fig.5. The estimation σest(t) by Algorithm 1 is very close to σ2(t) except for

at the boundary near t = 1. So the estimation algorithm is an efficient method to estimate the

well-separated time-varying parameter σ2(t). From Fig.6, we observe that the proposed adaptive

SST with σ = σest(t) is similar to the regular-PT adaptive SST with σ = σRe(t), and both of

them are much better than the conventional SST which is shown in Fig.5. Obviously, the proposed

second-order adaptive SST with σ = σest(t) is better than adaptive SST and regular-PT adaptive

SST with σ = σRe1(t). The second-order adaptive SST with the estimated parameter σest(t) is

as sharp as the second-order adaptive SST with parameter σ2(t) in Fig.5.
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7 Experiments on multicomponent signals

In this section we consider signals with more than 2 components. As demonstrated by Figs.5

and 6, the conventional second-order SST and second-order adaptive SST perform better than

the first-order SST, while the second-order regular-PT adaptive SST does not perform well. In

this section we just show some results of the conventional second-order SST and the second-order

adaptive SST.

First, we consider a three-component signal,

s(t) = s1(t)+s2(t)+s3(t) = cos
(
16πt

)
+cos

(
96πt+30 cos(4πt)

)
+cos

(
180πt+30 cos(4πt)

)
, (78)

where t ∈ [0, 1], s1(t) is a single-tone mode, s2(t) and s3(t) are sinusoidal frequency modulation

modes. s(t) is sampled uniformly with N = 512 sample points. Hence the sampling rate is

Fs = 512 Hz. We let µ in Morlet’s wavelet ψσ be 1, and τ in (44) to be 1/5.

Figure 7: Example of the three-component signal s(t) in (78). Top-left: instantaneous frequencies of the

s1(t), s2(t) and s3(t); Top-right: conventional second-order SST with σ = 1; Bottom-left: conventional

second-order SST with σ = 1.5; Bottom-right: second-order adaptive SST with time-varying σ(t) = σest(t).

Fig.7 shows the experimental results of the three-component signal s(t). Observe that the

second-order SSTs represent well for the single-tone mode s1(t). For the conventional second-order

SST, it is difficult to find a σ to represent well for both of the sinusoidal frequency modulation

modes s2(t) and s3(t). As shown in Fig.7, σ = 1 is suitable for s2(t), while σ = 1.5 is suitable

for s3(t). Setting same parameters {σj}, ∆σ, `, ζ, Γ3 and B as those in Fig.6, we estimate

the time-varying parameter σest(t). Note that the sinusoidal frequency modulation modes s2(t)
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and s3(t) are approximated by LFM modes during any local time when using Algorithm 1 to

estimate the time-varying parameter σ = σest(t). The bottom-right of Fig.7 shows the second-

order adaptive SST with σ = σest(t). Obviously, the second-order adaptive SST can represent

signal s(t) separately and sharply, and gives the highest energy concentration.

In real applications, signals are usually accompanied by noises and interferences. We add

Gaussian noises to the three-component signal s(t) in (78) with signal-to-noise ratio (SNR) 10dB.

Fig.8 shows the experimental results with enlarged scale, namely b ∈ [0.3, 08] and ξ ∈ [0, Fs/4]

for time-frequency diagrams. Although noises will affect the time-frequency distributions of SSTs

and second-order SSTs and decrease their energy concentration, the second-order adaptive SST

proposed in this paper is much clearer and sharper than other time-frequency distributions. This

is because the second-order adaptive SST has higher energy concentration as shown in Fig.7, and

therefore is more efficient in noise suppression.

Figure 8: Example of the three-component signal s(t) in (78) with noise SNR=10dB and enlarged scale.

Left: conventional second-order SST when σ = 1; Middle: conventional second-order SST when σ = 1.5;

Right: second-order adaptive SST with time-varying parameter σ(t) = σest(t) obtained by our proposed

Algorithm 1.

In order to further verify the reliability of the proposed algorithm, we test our method on a

real dataset containing a bat echolocation signal emitted by a large brown bat [55]. There are

400 samples with the sampling period 7 microseconds (sampling rate Fs ≈ 142.86 KHz). From

its CWT presented in Fig.9, the echolocation signal is a multicomponent signal, which consists

of nonlinear FM components. Fig.9 shows the time-frequency representations of the echolocation

signal: the conventional second-order SST with σ = 2 and the proposed second-order adaptive

SST with the estimated time-varying parameter σest(t). Unlike the three-component signal s(t) in

(78), the four components in the bat signal are much well separated. Thus, both the conventional

second-order SST and the second-order adaptive SST can separate well the components of the

signal. In addition, they both give sharp representations in the time-frequency plane. Comparing

with the conventional second-order SST, the second-order adaptive SST with σ = σest(t) gives a

better representation for the fourth component (the highest frequency component) and the two
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ends of the signal. One may tempt to try other choices of σ for the conventional SST. For example,

one may increase the value of σ to obtain a sharper representation of the fourth component with

the conventional second order SST, but this will affect the concentration of the first component

(the lowest frequency component).

Figure 9: Example of the bat echolocation signal. Top-left: waveform; Top-right: conventional CWT with

σ = 2; Bottom-left: conventional second-order SST with σ = 2; Bottom-right: second-order adaptive SST

with time-varying parameter σ(t) = σest(t) obtained by our proposed Algorithm 1.

8 Conclusion

In this paper, we propose the adaptive CWT, the adaptive SST and the second-order adaptive

SST, all with a time-varying parameter, for the multicomponent signal separation. We define

a bandwidth of Gaussian window to describe the supported zones of the CWT of a multicom-

ponent signal in the time-scale plane efficiently. We derive the well-separated conditions of a

multicomponent signal. Both the sinusoidal signal model and the linear frequency modulation

(linear chirp) signal model are proposed. We propose a new algorithm which selects automatically

the time-varying parameter for multicomponent signal separation. The simulation experiments

on multicomponent signals demonstrate the validity of the proposed method in noisy environ-

ment. In this paper, we consider the CWT-based SST. The method and algorithm proposed in
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this paper can be applied to the case of the STFT-based SST. We will report our results on the

adaptive STFT and adaptive STFT-based SST in an accompanying paper. In addition, we will

carry out the study of the adaptive SST with the quadratic chirp and other higher order chirp

models.

Appendix

In this appendix, we provide the proof of Propositions 1 and 2 and Theorem 1.

Proof of Proposition 1. From (19), we have∫ ∞
0

Wx(a, b, σ(b))
da

a
=

∫ ∞
0

∫ ∞
0

x̂(ξ)ψ̂σ(b)

(
aξ
)
ei2πbξdξ

da

a

=

∫ ∞
0

x̂(ξ)ei2πbξ
∫ ∞

0
ψ̂σ(b)

(
aξ
)da
a
dξ

=

∫ ∞
0

x̂(ξ)ei2πbξdξ

∫ ∞
0

ψ̂σ(b)

(
aξ
) da
a

=

∫ ∞
0

x̂(ξ)ei2πbξdξ

∫ ∞
0

ψ̂σ(b)(a)
da

a

= cψ(b)

∫ ∞
0

x̂(ξ)ei2πbξ dξ = cψ(b) x(b).

This completes the proof of (20).

If x(t) is real, then we have x̂(ξ) = x̂(−ξ). Thus,∫ 0

−∞
x̂(ξ)ei2πbξdξ =

∫ ∞
0

x̂(−ξ)e−i2πbξdξ =

∫ ∞
0

x̂(ξ)ei2πbξdξ,

and hence

x(b) =

∫ ∞
−∞

x̂(ξ)ei2πbξdξ =

∫ 0

−∞
x̂(ξ)ei2πbξdξ +

∫ ∞
0

x̂(ξ)ei2πbξdξ

= 2Re
(∫ ∞

0
x̂(ξ)ei2πbξdξ

)
.

From the proof of (20), we have∫ ∞
0

Wx(a, b, σ(b))
da

a
= cψ(b)

∫ ∞
0

x̂(ξ)ei2πbξdξ.

Therefore,

x(b) = 2Re
(∫ ∞

0
x̂(ξ)ei2πbξdξ

)
= Re

( 2

cψ(b)

∫ ∞
0

Wx(a, b, σ(b))
da

a

)
.

This proves (22). �

Proof of Theorem 1. For s = s(t) given by (34), from s′(t) =
(
p+ qt+ i2π(c+ rt)

)
s(t) and

W̃s(a, b) =

∫ ∞
−∞

s(b+ at)
1

σ(b)
g(

t

σ(b)
)e−i2πµtdt,
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we have

∂

∂b
W̃s(a, b) =

∫ ∞
−∞

s′(b+ at)
1

σ(b)
g(

t

σ(b)
)e−i2πµtdt+

∫ ∞
−∞

s(b+ at)(− σ
′(b)

σ(b)2
)g(

t

σ(b)
)e−i2πµtdt

+

∫ ∞
−∞

s(b+ at)(−σ
′(b)t

σ(b)3
)g′(

t

σ(b)
)e−i2πµtdt

=
(
p+ qb+ i2π(c+ rb)

)
W̃s(a, b) + (q + i2πr)a

∫ ∞
−∞

ts(b+ at)
1

σ(b)
g(

t

σ(b)
)e−i2πµtdt

−σ
′(b)

σ(b)
W̃s(a, b)−

σ′(b)

σ(b)
W̃ψ2

s (a, b)

=
(
p+ qb+ i2π(c+ rb)

)
W̃s(a, b) + (q + i2πr)aσ(b)W̃ψ1

s (a, b)− σ′(b)

σ(b)
W̃s(a, b)−

σ′(b)

σ(b)
W̃ψ2

s (a, b)

Thus, if W̃s(a, b) 6= 0, we have

∂
∂bW̃s(a, b)

W̃s(a, b)
= p+ qb+ i2π(c+ rb) + (q + i2πr)aσ(b)

W̃ψ1

s (a, b)

W̃s(a, b)
− σ′(b)

σ(b)
− σ′(b)

σ(b)

W̃ψ2

s (a, b)

W̃s(a, b)
. (79)

Taking partial derivative ∂
∂a to both sides of (79),

∂

∂a

( ∂
∂bW̃s(a, b)

W̃s(a, b)

)
= (q + i2πr)σ(b)

∂

∂a

(
a
W̃ψ1

s (a, b)

W̃s(a, b)

)
− σ′(b)

σ(b)

∂

∂a

(W̃ψ2

s (a, b)

W̃s(a, b)

)
.

Therefore, if in addition, ∂
∂a

(
aW̃

ψ1

s (a,b)

W̃s(a,b)

)
6= 0, then (q + i2πr)σ(b) = R0(a, b), where R0(a, b) is

defined by (40).

Back to (79) , we have

∂
∂bW̃s(a, b)

W̃s(a, b)
= p+ qb+ i2π(c+ rb) +R0(a, b)

aW̃ψ1

s (a, b)

W̃s(a, b)
− σ′(b)

σ(b)
− σ′(b)

σ(b)

W̃ψ2

s (a, b)

W̃s(a, b)
.

Hence,

φ′(b) = c+ rb = Re
{ ∂

∂bW̃s(a, b)

i2πW̃s(a, b)

}
− a Re

{ W̃ψ1

s (a, b)

i2πW̃s(a, b)
R0(a, b)

}
+
σ′(b)

σ(b)
Re
{ W̃ψ2

s (a, b)

i2πW̃s(a, b)

}
.

Thus for an LFM signal x(t) given by (34), at (a, b) where ∂
∂a

(
aW̃

ψ1

s (a,b)

W̃s(a,b)

)
6= 0 and W̃s(a, b) 6= 0,

ωadp,2nds (a, b) defined by (39) is φ′(b) = c+ rb, the IF of s(t). This shows Theorem 1. �

Proof of Proposition 2. Let s(t) be the linear chirp signal given by (46). Then the CWT
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of s(t) with ψσ is given by

Ws(a, b) =

∫ ∞
−∞

s(t)ψσ(
t− b
a

)
dt

a
=

∫ ∞
−∞

s(b+ aτ)ψσ(τ)dτ

=

∫ ∞
−∞

Aei2π
(
c(b+aτ)+ 1

2
r(b+aτ)2

)
1

σ
√

2π
e−

τ2

2σ2 e−i2πµτdτ

=
A

σ
√

2π

∫ ∞
−∞

ei2π
(
cb+caτ+ r

2
b2+rbaτ+ r

2
a2τ2

)
e−

τ2

2σ2 e−i2πµτdτ

=
A

σ
√

2π
ei2π

(
cb+ r

2
b2
) ∫ ∞
−∞

e−
τ2

2σ2
+iπra2τ2+i2πa

(
c+rb−µ

a

)
τdτ

=
A

σ
√

2π
ei2π

(
cb+ r

2
b2
) √

π√
1

2σ2 − iπra2
e
−2π2(aσ)2(c+rb−µ

a
)2 1

1−i2πσ2ra2

=
A√

1− i2πσ2a2r
ei2π

(
cb+ r

2
b2
)
e
− 2π2(aσ)2

1+(2πσ2a2r)2
(c+rb−µ

a
)2(1+i2πσ2a2r)

,

where the second last equality follows from Lemma 1. Thus (47) holds. �
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