N. Mohan Kumar - A.P. Rao - G.V. Ravindra

FOUR-BY-FOUR PFAFFIANS

Dedicated to Paolo Valabrega on the occasion of his 60th birthday

Abstract. This paper shows that the general hypersurface of degree ≥ 6 in projective four space cannot support an indecomposable rank two vector bundle which is Arithmetically Cohen-Macaulay and four generated. Equivalently, the equation of the hypersurface is not the Pfaffian of a four by four minimal skew-symmetric matrix.

1. Introduction

In this note, we study indecomposable rank two bundles E on a smooth hypersurface X in \mathbf{P}^4 which are Arithmetically Cohen-Macaulay. The existence of such a bundle on X is equivalent to X being the Pfaffian of a minimal skew-symmetric matrix of size $2k \times 2k$, with $k \geq 2$. The general hypersurface of degree ≤ 5 in \mathbf{P}^4 is known to be Pfaffian ([1], [2], [5]) and the general sextic in \mathbf{P}^4 is known to be not Pfaffian ([4]). One should expect the result of [4] to extend to all general hypersurfaces of degree ≥ 6 . (Indeed the analogous statement for hypersurfaces in \mathbf{P}^5 was established in [7].) However, in this note we offer a partial result towards that conclusion. We show that the general hypersurface in \mathbf{P}^4 of degree ≥ 6 is not the Pfaffian of a 4×4 skew-symmetric matrix. For a hypersurface of degree r to be the Pfaffian of a $2k \times 2k$ skew-symmetric matrix, we must have $2 \leq k \leq r$. It is quite easy to show by a dimension count that the general hypersurface of degree $r \geq 6$ in \mathbf{P}^4 is not the Pfaffian of a $2r \times 2r$ skew-symmetric matrix of linear forms. Thus, this note addresses the lower extreme of the range for k.

2. Reductions

Let X be a smooth hypersurface in \mathbf{P}^4 of degree $r \geq 2$. A rank two vector bundle E on X will be called Arithmetically Cohen-Macaulay (or ACM) if $\bigoplus_{k \in \mathbb{Z}} H^i(X, E(k))$ equals 0 for i = 1, 2. Since $\operatorname{Pic}(X)$ equals \mathbb{Z} , with generator $\mathcal{O}_X(1)$, the first Chern class $c_1(E)$ can be treated as an integer t. The bundle E has a minimal resolution over \mathbf{P}^4 of the form

$$0 \to L_1 \xrightarrow{\phi} L_0 \to E \to 0,$$

where L_0, L_1 are sums of line bundles. By using the isomorphism of E and $E^{\vee}(t)$, we obtain (see [2]) that $L_1 \cong L_0^{\vee}(t-r)$ and the matrix ϕ (of homogeneous polynomials) can be chosen as skew-symmetric. In particular, L_0 has even rank and the defining polynomial of X is the Pfaffian of this matrix. The case where ϕ is two by two is just the case where E is decomposable. The next case is where ϕ is a four by four minimal matrix. These correspond to ACM bundles E with four global sections (in possibly different degrees) which generate it.

Our goal is to show that the generic hypersurface of degree $r \geq 6$ in ${\bf P}^4$ does not support an indecomposable rank two ACM bundle which is four generated, or equivalently, that such a hypersurface does not have the Pfaffian of a four by four minimal matrix as its defining polynomial.

So fix a degree $r \geq 6$. Let us assume that E is a rank two ACM bundle which is four generated and which has been normalized so that its first Chern class t equals 0 or -1. If $L_0 = \bigoplus_{i=1}^4 \mathcal{O}_{\mathbf{P}}(a_i)$ with $a_1 \geq a_2 \geq a_3 \geq a_4$, the resolution for E is given by

$$\bigoplus_{i=1}^{4} \mathcal{O}_{\mathbf{P}}(t - a_i - r) \xrightarrow{\phi} \bigoplus_{i=1}^{4} \mathcal{O}_{\mathbf{P}}(a_i).$$

Write the matrix of ϕ as

$$\phi = \begin{bmatrix} 0 & A & B & C \\ -A & 0 & D & E \\ -B & -D & 0 & F \\ -C & -E & -F & 0 \end{bmatrix}.$$

Since X is smooth with equation AF - BE + CD = 0, the homogeneous entries A, B, C, D, E, F are all non-zero and have no common zero on \mathbf{P}^4 .

LEMMA 1. For fixed r and t (normalized), there are only finitely many possibilities for (a_1, a_2, a_3, a_4) .

Proof. Let a,b,c,d,e,f denote the degrees of the poynomials A,B,C,D,E,F. Since the Pfaffian of the matrix is AF-BE+CD, the degree of each matrix entry is bounded between 1 and r-1. $a=a_1+a_2+(r-t), b=a_1+a_3+(r-t)$ etc. Thus if $i\neq j,\ 0< a_i+a_j+r-t< r$ while $\sum a_i=-r+2t$. From the inequality, regardless of the sign of a_1 , the other three values a_2,a_3,a_4 are <0. But again using the inequality, their pairwise sums are >-r+t, hence there are only finitely many choices for them. Lastly, a_1 depends on the remaining quantities.

It suffices therefore to fix $r \ge 6$, t = 0 or -1 and a four-tuple (a_1, a_2, a_3, a_4) and show that there is no ACM bundle on the general hypersurface of degree r which has a resolution given by a matrix ϕ of the type $(a_1, a_2, a_3, a_4), t$.

From the inequalities on a_i , we obtain the inequalities

$$0 < a \leq b \leq c, d \leq e \leq f < r.$$

We do no harm by rewriting the matrix ϕ with the letters C and D interchanged to assume without loss of generality that $c \leq d$.

PROPOSITION 1. Let X be a smooth hypersurface of degree ≥ 3 in \mathbf{P}^4 supporting an ACM bundle E of type $(a_1 \geq a_2 \geq a_3 \geq a_4), t$. The degrees of the entries of ϕ can be arranged (without loss of generality) as:

$$a \le b \le c \le d \le e \le f$$
.

Then X will contain a curve Y which is the complete intersection of hypersurfaces of the three lowest degrees in the arrangement and a curve Z which is the complete intersection of hypersurfaces of the three highest degrees in the arrangement.

Proof. Consider the ideals (A, B, C) and (D, E, F). Since the equation of X is AF - BE + CD, these ideals give subschemes of X. Take for example (A, B, C). If the variety Y it defines has a surface component, this gives a divisor on X. As $Pic(X) = \mathbb{Z}$, there is a hypersurface S = 0 in \mathbf{P}^4 inducing this divisor. Now at a point in \mathbf{P}^4 where S = D = E = F = 0, all six polynomials A, \ldots, F vanish, making a multiple point for X. Hence, X being smooth, Y must be a curve on X. Thus (A, B, C) defines a complete intersection curve on X.

To make our notations non-vacuous, we will assume that at least one smooth hypersurface exists of a fixed degree $r \geq 6$ with an ACM bundle of type $(a_1 \geq a_2 \geq a_3 \geq a_4), t$. Let $\mathcal{F}_{(a,b,c);r}$ denote the Hilbert flag scheme that parametrizes all inclusions $Y \subset X \subset \mathbf{P}^4$ where X is a hypersurface of degree r and Y is a complete intersection curve lying on X which is cut out by three hypersurfaces of degrees a, b, c. Our discussion above produces points in $\mathcal{F}_{(a,b,c);r}$ and $\mathcal{F}_{(d,e,f);r}$.

Let \mathcal{H}_r denote the Hilbert scheme of all hypersurfaces in \mathbf{P}^4 of degree r and let $\mathcal{H}_{a,b,c}$ denote the Hilbert scheme of all curves in \mathbf{P}^4 with the same Hilbert polynomial as the complete intersection of three hypersurfaces of degrees a, b and c. Following J. Kleppe ([6]), the Zariski tangent spaces of these three schemes are related as follows: corresponding to the projections

$$\begin{array}{ccc}
\mathcal{F}_{(a,b,c);r} \stackrel{p_2}{\to} & \mathcal{H}_{a,b,c} \\
\downarrow p_1 & & \\
\mathcal{H}_r & & & \\
\end{array}$$

if T is the tangent space at the point $Y \stackrel{i}{\hookrightarrow} X \subset \mathbf{P}^4$ of $\mathcal{F}_{(a,b,c);r}$, there is a Cartesian diagram

$$\begin{array}{ccc} T & \xrightarrow{p_2} & H^0(Y, \mathcal{N}_{Y/\mathbf{P}}) \\ \downarrow^{p_1} & & \downarrow^{\alpha} \\ H^0(X, \mathcal{N}_{X/\mathbf{P}}) & \xrightarrow{\beta} & H^0(Y, i^* \mathcal{N}_{X/\mathbf{P}}) \end{array}$$

of vector spaces.

Hence $p_1: T \to H^0(X, \mathcal{N}_{X/\mathbf{P}})$ is onto if and only if $\alpha: H^0(Y, \mathcal{N}_{Y/\mathbf{P}}) \to H^0(Y, i^*\mathcal{N}_{X/\mathbf{P}})$ is onto. The map α is easy to describe. It is the map given as

$$H^0(Y, \mathcal{O}_Y(a) \oplus \mathcal{O}_Y(b) \oplus \mathcal{O}_Y(c)) \xrightarrow{[F, -E, D]} H^0(Y, \mathcal{O}_Y(r)).$$

Hence

PROPOSITION 2. Choose general forms A, B, C, D, E, F of degrees a, b, c, d, e, f and let Y be the curve defined by A = B = C = 0. If the map

$$H^0(Y, \mathcal{O}_Y(a) \oplus \mathcal{O}_Y(b) \oplus \mathcal{O}_Y(c)) \xrightarrow{[F, -E, D]} H^0(Y, \mathcal{O}_Y(r))$$

is not onto, then the general hypersurface of degree r does not support a rank two ACM bundle of type $(a_1, a_2, a_3, a_4), t$.

Proof. Consider a general Pfaffian hypersurface X of equation AF-BE+CD=0 where A,B,C,D,E,F are chosen generally. Such an X contains such a Y and X is in the image of p_1 . By our hypothesis, $p_1:T\to H^0(X,\mathcal{N}_{Y/\mathbf{P}})$ is not onto and (in characteristic zero) it follows that $p_1:\mathcal{F}_{(a,b,c);r}\to\mathcal{H}_r$ is not dominant. Since all hypersurfaces X supporting such a rank two ACM bundle are in the image of p_1 , we are done.

REMARK 1. Note that the last proposition can also be applied to the situation where Y is replaced by the curve Z given by D = E = F = 0, with the map given by [A, -B, C], with a similar statement.

3. Calculations

We are given general forms A, B, C, D, E, F of degrees a, b, c, d, e, f where a+f=b+e=c+d=r and where without loss of generality, by interchanging C and D we may assume that $1 \le a \le b \le c \le d \le e \le f < r$. Assume that $r \ge 6$. We will show that if Y is the curve A = B = C = 0 or if Z is the curve D = E = F = 0, depending on the conditions on a, b, c, d, e, f, either $H^0(\mathcal{N}_{Y/\mathbf{P}}) \xrightarrow{[F, -E, D]} H^0(\mathcal{O}_Y(r))$ or $H^0(\mathcal{N}_{Z/\mathbf{P}}) \xrightarrow{[A, -B, C]} H^0(\mathcal{O}_Z(r))$ is not onto. This will prove the desired result.

3.1. Case 1

 $b \ge 3$, $c \ge a + 1$, 2a + b < r - 2.

In ${f P}^5$ (or in 6 variables) consider the homogeneous complete intersection ideal

$$I = (X_0^a, X_1^b, X_2^c, X_3^{r-c}, X_4^{r-b}, X_5^{r-a} - X_2^{c-a-1}X_3^{r-c-a-1}X_4^{a+2})$$

in the the polynomial ring S_5 on X_0, \ldots, X_5 . Viewed as a module over S_4 (the polynomial ring on X_0, \ldots, X_4), $M = S_5/I$ decomposes as a direct sum

$$M = N(0) \oplus N(1)X_5 \oplus N(2)X_5^2 \oplus \cdots \oplus N(r-a-1)X_5^{r-a-1},$$

where the N(i) are graded S_4 modules. Consider the multiplication map X_5 : $M_{r-1} \to M_r$ from the (r-1)-st to the r-th graded pieces of M. We claim it is injective and not surjective.

Indeed, any element m in the kernel is of the form nX_5^{r-a-1} where n is a homogeneous element in N(r-a-1) of degree a. Since $X_5 \cdot m = n \cdot X_5^{r-a} \equiv n \cdot X_2^{c-a-1}X_3^{r-c-a-1}X_4^{a+2} \equiv 0 \mod(X_0^a, X_1^b, X_2^c, X_3^{r-c}, X_4^{r-b})$ we may assume that n itself is represented by a monomial in X_0, \ldots, X_4 of degree a. Our inequalities have been chosen so that even in the case where n is represented by X_4^a , the exponents of X_4 in the product is a+a+2 which is less than r-b. Thus n and hence the kernel must be 0.

On the other hand, the element $X_0^{a-1}X_1^2X_2^{c-a-1}X_3^{r-c-a-1}X_4^{a+1}$ in M_r lies in its first summand $N(0)_r$. In order to be in the image of multiplication by X_5 , this element must be a multiple of $X_2^{c-a-1}X_3^{r-c-a-1}X_4^{a+2}$. By inspecting the factor in X_4 , this is clearly not the case. So the multiplication map is not surjective.

Hence dim $M_{r-1} < \dim M_r$. Now the Hilbert function of a complete intersection ideal like I depends only on the degrees of the generators. Hence, for any complete intersection ideal I' in S_5 with generators of the same degrees, for the corresponding module $M' = S_5/I'$, dim $M'_{r-1} < \dim M'_r$.

Now coming back to our general six forms A, B, C, D, E, F in S_4 , of the same degrees as the generators of the ideal I above. Since they include a regular sequence on \mathbf{P}^4 , we can lift these polynomials to forms A', B', C', D', E', F' in S_5 which give a complete intersection ideal I' in S_5 .

The module $\bar{M} = S_4/(A, B, C, D, E, F)$ is the cokernel of the map

$$X_5: M'(-1) \to M'.$$

By our argument above, we conclude that $\bar{M}_r \neq 0$.

Lastly, the map $H^0(\mathcal{O}_Y(a) \oplus \mathcal{O}_Y(b) \oplus \mathcal{O}_Y(c)) \xrightarrow{[F,-E,D]} H^0(\mathcal{O}_Y(r))$ has cokernel precisely \bar{M}_r which is not zero, and hence the map is not onto.

3.2. Case 2

 $b \leq 2$.

Since the forms are general, the curve Y given by A = B = C = 0 is a smooth complete intersection curve, with $\omega_Y \cong \mathcal{O}_Y(a+b+c-5)$. Since $a+b \leq 4$, $\mathcal{O}_Y(c)$ is nonspecial.

1. Suppose $\mathcal{O}_Y(a)$ is nonspecial. Then all three of $\mathcal{O}_Y(a)$, $\mathcal{O}_Y(b)$, $\mathcal{O}_Y(c)$ are nonspecial. Hence $h^0(\mathcal{N}_{Y/\mathbf{P}}) = (a+b+c)\delta + 3(1-g)$ where $\delta = abc$ is the

degree of Y and g is the genus. Also $h^0(\mathcal{O}_Y(r)) = r\delta + 1 - g + h^1(\mathcal{O}_Y(r)) \ge$ $r\delta + 1 - g$. To show that $h^0(\mathcal{N}_{Y/\mathbf{P}}) < h^0(\mathcal{O}_Y(r))$, it is enough to show that

$$(a+b+c)\delta + 3(1-g) < r\delta + 1 - g.$$

Since $2g - 2 = (a + b + c - 5)\delta$, this inequality becomes $5\delta < r\delta$ which is true as $r \geq 6$.

2. Suppose $\mathcal{O}_Y(a)$ is special (so $b+c\geq 5$), but $\mathcal{O}_Y(b)$ is nonspecial. By Clifford's theorem, $h^0(\mathcal{O}_Y(a)) \leq \frac{1}{2}a\delta + 1$. In this case $h^0(\mathcal{N}_{Y/\mathbf{P}}) < h^0(\mathcal{O}_Y(r))$ will be true provided that

$$\frac{1}{2}a\delta + 1 + (b+c)\delta + 2(1-g) < r\delta + (1-g)$$

or
$$r > \frac{b+c}{2} + \frac{1}{\delta} + \frac{5}{2}$$
.

Since $c \leq \frac{r}{2}$ and $b \leq 2$, this is achieved if

$$r>\frac{2+r/2}{2}+\frac{1}{\delta}+\frac{5}{2}$$
 which is the same as $r>\frac{14}{3}+\frac{4}{3\delta}.$

But $c \geq 3$, so $\delta \geq 3$, hence the last inequality is true as $r \geq 6$.

3. Suppose both $\mathcal{O}_Y(a)$ and $\mathcal{O}_Y(b)$ are special. Hence $a+c\geq 5$. Using Clifford's theorem, in this case $h^0(\mathcal{N}_{Y/\mathbf{P}}) < h^0(\mathcal{O}_Y(r))$ will be true provided that

$$\frac{1}{2}(a+b)\delta + 2 + c\delta + (1-g) < r\delta + (1-g).$$

This becomes $r>\frac{1}{2}(a+b)+\frac{2}{\delta}+c$. Using $c\leq\frac{r}{2},\ a+b\leq4,$ and $\delta\geq3,$ this is again true when $r\geq6.$

3.3. Case 3

c < a + 1.

In this case a = b = c and $r \ge 2a$. Using the sequence

$$0 \to \mathcal{I}_V(a) \to \mathcal{O}_{\mathbf{P}}(a) \to \mathcal{O}_V(a) \to 0$$
,

we get $h^0(\mathcal{N}_{Y/\mathbf{P}}) = 3h^0(\mathcal{O}_Y(a)) = 3[\binom{a+4}{4} - 3]$

while $h^0(\mathcal{O}_Y(r)) \geq h^0(\mathcal{O}_Y(2a)) = {2a+4 \choose 4} - 3{a+4 \choose 4} + 3$. Hence the inequality $h^0(\mathcal{N}_{Y/\mathbf{P}}) < h^0(\mathcal{O}_Y(r))$ will be true provided ${2a+4 \choose 4} > 6{a+4 \choose 4} - 12$.

$$\binom{2a+4}{2} > 6\binom{a+4}{2} - 12$$

The reader may verify that it reduces to

$$10a^4 + 20a^3 - 70a^2 - 200a + 7(4!) > 0$$

and the last inequality is true when $a \geq 3$. Thus we have settled this case when $r \geq 6$ and $a \geq 3$. If $r \geq 6$ and a (and hence b) ≤ 2 , we are back in the previous case.

3.4. Case 4

 $2a + b \ge r - 2$ and $r \ge 82$.

For this case, we will study the curve Z given by D = E = F = 0 (of degrees r - c, r - b, r - a) and consider the inequality $h^0(\mathcal{N}_{Z/\mathbf{P}}) < h^0(\mathcal{O}_Z(r))$.

Since $a,b,c\leq \frac{r}{2},\ 2a+2\geq r-b\geq \frac{r}{2},$ hence $a\geq \frac{r}{4}-1.$ Also $b\geq a$ and $2a+b\geq r-2,$ hence $b\geq \frac{r}{3}-\frac{2}{3}.$ Likewise, $c\geq \frac{r}{3}-\frac{2}{3}.$

Now $h^0(\mathcal{O}_Z(r-a)) = h^0(\mathcal{O}_{\mathbf{P}}(r-a)) - h^0(\mathcal{I}_Z(r-a)) \le {r-a+4 \choose 4} - 1$ etc., hence

 $h^0(\mathcal{N}_{Z/\mathbf{P}}) \leq {r-a+4 \choose 4} + {r-b+4 \choose 4} + {r-c+4 \choose 4} - 3 \leq {3r+5 \choose 4} + 2{2r+14 \choose 3} - 3$ or $h^0(\mathcal{N}_{Z/\mathbf{P}}) \leq G(r)$, where G(r) is the last expression.

Looking at the Koszul resolution for $\mathcal{O}_Z(r)$, since $a+b+c \leq \frac{3r}{2} < 2r$, the last term in the resolution has no global sections. Hence $h^0(\mathcal{O}_Z(r)) \geq h^0(\mathcal{O}_{\mathbf{P}}(r)) - [h^0(\mathcal{O}_{\mathbf{P}}(a)) + h^0(\mathcal{O}_{\mathbf{P}}(b)) + h^0(\mathcal{O}_{\mathbf{P}}(c))] \geq \binom{r+4}{4} - \binom{a+4}{4} - \binom{b+4}{4} - \binom{c+4}{4} \geq \binom{r+4}{4} - 3\binom{r+4}{4}$, or $h^0(\mathcal{O}_Z(r)) \geq F(r)$, where F(r) is the last expression. The reader may verify that G(r) < F(r) for $r \geq 82$.

3.5. Case 5

 $6 \le r \le 81, 2a + b \ge r - 2, b \ge 3, c \ge a + 1.$

We still have $\frac{r}{4} - 1 \le a \le \frac{r}{2}, \frac{r}{3} - \frac{2}{3} \le b, c \le \frac{r}{2}$. For the curve Y given by A = B = C = 0, we can explicitly compute $h^0(\mathcal{O}_Y(k))$ for any k using the Koszul resolution for $\mathcal{O}_Y(k)$. Hence both terms in the inequality $h^0(\mathcal{N}_{Y/\mathbf{P}}) < h^0(\mathcal{O}_Y(r))$ can be computed for all allowable values of a, b, c, r using a computer program like Maple and the inequality can be verified. We will leave it to the reader to verify this claim.

References

- [1] ADLER A. AND RAMANAN S., *Moduli of abelian varieties*, Lecture Notes in Mathematics Vol. 1644, Springer-Verlag, Berlin, 1996.
- [2] BEAUVILLE A., *Determinantal hypersurfaces*, Dedicated to William Fulton on the occasion of his 60th birthday, Michigan Math. J. **48** (2000), 39–64.
- [3] CHIANTINI L. AND MADONNA C., ACM bundles on a general quintic three-fold, Dedicated to Silvio Greco on the occasion of his 60th birthday (Catania, 2001), Le Matematiche 55 (2000), no. 2, 239–258 (2002).
- [4] Chiantini L. and Madonna C., A splitting criterion for rank 2 bundles on a general sextic threefold, Internat. J. Math. 15 (2004), no. 4, 341–359.
- [5] ILIEV A. AND MARKUSHEVICH D., Quartic 3-fold: Pfaffians, vector bundles, and half-canonical curves, Michigan Math. J. 47 (2000), no. 2, 385–394.

- [6] KLEPPE J., The Hilbert-flag scheme, its properties and its connection with the Hilbert scheme. Applications to curves in 3-space, Thesis, University of Oslo (1981).
- [7] Mohan Kumar N., Rao A.P., Ravindra G.V., Arithmetically Cohen-Macaulay bundles on hypersurfaces, preprint (2005).

AMS Subject Classification: 14F05

N. MOHAN KUMAR, G.V. RAVINDRA Department of Mathematics Washington University in St. Louis St. Louis, Missouri, 63130 kumar@wustl.edu ravindra@math.wustl.edu

A.P. RAO Department of Mathematics University of Missouri-St. Louis St. Louis, Missouri, 63121 rao@arch.umsl.edu